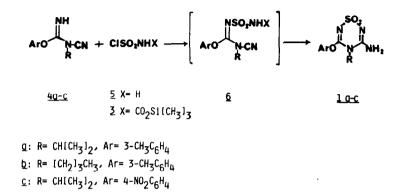
Tetrahedron Letters, Vol.27, No.2, pp 123-126, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain ©1986 Pergamon Press Ltd.

THE INTRODUCTION OF A NEW SULFAMOYLATION REAGENT: N-CARBO-(TRIMETHYLSILYLOXY)SULFAMOYLCHLORIDE. VERSATILE SYNTHESES OF 3-AMINO-4-N-ALKYL AND 3-AMINO-2-N-ALKYL-5-ARYLOXY-1,2,4,6-THIATRIAZINE-1,1-DIOXIDES.

Pamela J. Durham and Robert A. Galemmo, Jr.* Rorer Group, Inc., Pharmaceutical Research and Development Division Fort Washington, PA 19034

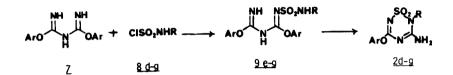

The use of a new sulfamoylation reagent, N-carbo-(trimethylsilyloxy)sulfamoyl chloride ($\underline{3}$) has led to an abbreviated and high yielding preparation of 3amino-4-N-alkyl-5-aryloxy-1,2,4,6-thiatriazine-1,1-dioxides ($\underline{1}$). A related approach to the 2-N-alkyl isomer ($\underline{2}$) is described.

N-Alkyl-1,2,4,6-thiatriazine-1,1-dioxides are compounds of considerable interest due to their herbicidal¹, fungicidal² and histamine H_2 antagonist^{3,4} activity. We wish to report the development of efficient preparations for 3-amino-4-N-alkyl-5-aryloxy-1,2,4,6-thiatriazine-1,1- dioxides (<u>1</u>, where X is <u>m</u>-cresol) and the related 2-N-alkyl isomers (<u>2</u>, where X is <u>m</u>-cresol). Furthermore, our preparation of <u>1</u> introduces the use of a readily prepared, protected derivative of sulfamoyl chloride: N-carbo-(trimethylsilyloxy)sulfamoyl chloride(<u>3</u>). This reagent should be of general utility in the preparation of a wide variety of S and N containing heterocycles.

Our methodology has proved to be advantageous for the synthesis of both 4-N-alkyl and 2-N-alkyl isomers substituted with sterically demanding

CISO2NHCO2SiMe3 3 2

alkyl groups. In work reported previously⁵, the 4-N-isopropyl derivative of 1 (where X is methylthic) could not be prepared^{5a} and the 2-N-isopropyl derivative of 2 (where X is methylthic) was available in low yield $(6\%)^{5b}$. We have obtained yields of 81% and 54%, respectively for the corresponding isopropyl derivatives of 1 and 2 (where X is m-cresol).


The scheme for the synthesis of <u>1</u> envisioned the cyclization of readily available N-cyano-N-alkyl pseudoureas $\frac{4a-c}{6}^{6}$ with sulfamoyl chloride (<u>5</u>). However, we found the preparation of <u>5</u> (by the addition of one equivalent of water to chlorosulfonyl isocyanate⁷) to be inconvenient on a small scale and the purification of bifunctional <u>5</u> by distillation resulted in a low yield. Our solution to this problem was the development of a convenient substitute for <u>5</u>, N-carbo(trimethylsilyloxy)sulfamoyl chloride (<u>3</u>).

Reagent 3 was available from the addition of one equivalent of 2-(trimethylsilyl)ethanol to chlorosulfonyl isocyanate in a variety of solvent mixtures (carbon tetrachloride, 4:1 carbon tetrachloride:dichloromethane and 4:1 carbon tetrachloride:cyclohexane). The initial adduct was detected by ¹H NMR⁸, but during the removal of solvent under the usual conditions (~20 mm Hg, 40[°]) the elimination of ethylene occurred to give 3^9 .

$$Clso_NCO + HO(CH_2)_SIMe_3 \longrightarrow Clso_NHCO_2(CH_2)_SIMe_3 \xrightarrow{-CH_2CH_2} Clso_NHCO_2SIMe_3$$

<u>3</u>

Sulfamoylation of $\underline{4a}$ and $\underline{4b}$ with a mixture of one equivalent each of freshly prepared 3 and triethylamine in dichloromethane gave 6. Compound 6 was deprotected and cyclized in <u>situ</u> by the addition of an excess of water with vigorous stirring. Heterocycles <u>1a</u> and <u>1b</u>¹⁰ precipitated from the reaction mixture in excellent yield (see Table). Due to the decomposition of <u>4c</u> by triethylamine, <u>1c</u> was prepared by the addition of 0.5 equivalent of 3 to <u>4c</u> and the product isolated by column chromatography after hydrolysis.

Ar= 3-CH₃C₆H₄, R= \underline{d} : CH₃, \underline{e} : CH[CH₃]₂, \underline{f} : [CH₂]₃CH₃, \underline{g} : C₆H₁₁

The preparation of 2 followed in analogous fashion from imino bis[(3methylphenyl)carbimidic acid] (7)¹¹. Sulfamoylation of 7 with one equivalent of N-methylsulfamoyl chloride (8d)¹² and triethylamine in tetrahydrofuran gave 2d directly in quantitative yield. Similar treatment of 7 with the higher alkyl derivatives $\underline{8e-g}^{12}$ gave only the adducts $\underline{9e-g}$. These derivatives of 9 were cyclized with two equivalents of sodium hydride in tetrahydrofuran at room temperature to heterocycles $\underline{2e-g}$ in good yield (see Table). The reaction time for the conversion of 9 to 2 varied directly with the increasing steric bulk of the N-alkyl group¹³. A similar steric inhibition was observed in cyclizations with N-alkylsulfamoyl derivatives of isothiobiuret similar to 9 (where ArO was the alkylthio group)^{5b}.

т	а	b	l	е
-	_	_	-	-

		R	Ar	mp	<u>Yield (%)</u>
1	а	^{CH(CH} 3)2	^{3-CH} 3 ^C 6 ^H 4	>250°	86
	b	(CH ₂) ₃ CH ₃	3-CH ₃ C ₆ H ₄	208–213 ⁰	81
	с	CH(CH ₃)2	4-N02 ^{C6H4}	>250 ⁰	42
2	d	СНЗ	3-CH3C6H4	>250 ⁰	100
	е	CH(CH ₃) ₂	3-CH3C6H4	190-191 ⁰	54
	f	(CH ₂) ₃ CH ₃	3-CH ₃ C ₆ H ₄	171-173 ⁰	80
	g	C ₆ H ₁₁	3-CH ₃ C ₆ H ₄	216-217 ⁰	35
2	е	CH(CH ₃) ₂	3-CH ₃ C ₆ H ₄	107-110 ⁰	80
	f	(CH ₂) ₃ CH ₃	3-CH ₃ C ₆ H ₄	100 - 102 ⁰	98
	g	^C 6 ^H 11	3-CH3C6H4	141-143 ⁰	73

REFERENCES AND NOTES

- BASF, W. German Patent 3,143,381 (1983); W. German Patent 3,134,145 (1983); W. German Patent 2,933,889 (1979); US Patent 4,426,219 (1984).
- 2. ICI, W. German Patent 2,508,832 (1975).
- 3. Merck, US Patent 4,497,810 (1985).
- 4. Hoechst, European Patent 0,104,611 (1984).
- a: S.J. Cousins, B.C. Ross, G.N. Maw and J.D. Micheal, <u>Tet. Lett.</u>, <u>26</u> (8) 1105 (1985);
 b: J.D. Micheal, P.M. Rees and B.C. Ross, <u>Tet. Lett.</u>, <u>26</u> (8) 1101 (1985);
 c: Y. Nakayoma and Y. Sanemitsu, <u>J. Heterocyclic Chem.</u>, <u>21</u> 1553 (1984).
- Compounds <u>4a-c</u> are prepared in two steps from the corresponding primary amine: P.H. Benders, <u>J. Royal Netherlands Chem. Soc</u>., <u>95</u> (9), 217 (1976); P.H. Benders and J.T. Hackmann, <u>Recueil Chim. Pays Bas</u>, <u>91</u> 343 (1972).
- 7. R. Appel and G. Berger, <u>Chem. Ber.</u>, <u>91</u> 1339 (1958); R. Graf, <u>Chem. Ber</u>., <u>92</u> 509 (1959).
- 8. 90 MHz ¹H NMR (CCl₄, CH₂Cl₂ standard) δ : 8.8 (s, 1H), 4.3 (t, J=8Hz, 2H), 1.15 (t, J=8Hz, 2H) and 0.1 (s, 9H).
- 9. Reagent 3: One equivalent of 2-(trimethylsilyl)ethanol was added dropwise to a 2M solution of chlorosulfonyl isocyanate in 4:1 carbontetrachloride:hexane at ambient temperature. During the addition the reaction temperature rose from 25 to 40°C and the mixture was allowed to stir for 1h. After removal of the solvent, 3 was isolated in 100% yield as a low melting solid (m.p. <40°) and was used directly in sulfamoylations. 90MHz ¹H NMR (CCl4, CH₂Cl₂ standard) &: 8.6 (s, 1H) and 0.1 (s, 9H);IR 1740 (s), 1720 (s), 1410 (s), 1350 (s), 1160 (s) and 1050 (s).
- Compounds <u>1a-c</u>, <u>2d-g</u> and <u>9e-g</u> gave satisfactory combustion analyses. The ¹H NMR, infrared and mass spectra were in agreement with their proposed structures.
- 11. E. Grigat and R. Putter, Chem. Ber., 97 3027 (1964).
- 12. J.A. Kloek and K.L. Leschinsky, J. Org. Chem., 41 (25) 4028 (1976).
- The approximate times for the complete conversion of <u>9</u> to <u>2</u> were for <u>9e</u>: 1h, <u>9f</u>: 0.25h, <u>9h</u>: 3h. Reactions were monitored by TLC.

(Received in USA 30 August 1985)